Physics-informed machine learning models for predicting the progress of reactive-mixing

نویسندگان

چکیده

This paper presents a physics-informed machine learning (ML) framework to construct reduced-order models (ROMs) for reactive-transport quantities of interest (QoIs) based on high-fidelity numerical simulations. QoIs include species decay, product yield, and degree mixing. The ROMs are applied quantify understand how the chemical evolve over time. First, high-resolution datasets constructing generated by solving anisotropic reaction–diffusion equations using non-negative finite element formulation different input parameters. reactive-mixing model parameters are: time-scale associated with flipping velocity, spatial-scale controlling small/large vortex structures perturbation parameter vortex-based dispersion contrast, molecular diffusion. Second, random forests, F-test, mutual information criterion used evaluate importance inputs/features respect QoIs. We observed that contrast is most important feature velocity least feature. Third, Support Vector Machines (SVM) Regression (SVR) inputs. constructed SVR-ROMs then predict scaling also present estimates inequalities QoIs, which inform mix, produce in an exponential fashion. These radial basis function suitable kernel SVM/SVR It R2-score unseen data greater than 0.9, implying able system state reasonably well. Finally, terms computational cost, proposed SVM-ROMs O(107) times faster running simulation evaluating makes ML-based attractive sensing real-time monitoring applications as they significantly yet accurate.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Machine Learning for Better Models for Predicting Bond Prices

Bond prices are a reflection of extremely complex market interactions and policies, making prediction of future prices difficult. This task becomes even more challenging due to the dearth of relevant information, and accuracy is not the only consideration–in trading situations, time is of the essence. Thus, machine learning in the context of bond price predictions should be both fast and accura...

متن کامل

Hidden physics models: Machine learning of nonlinear partial differential equations

While there is currently a lot of enthusiasm about “big data”, useful data is usually “small” and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by tim...

متن کامل

Parameterized Machine Learning for High-Energy Physics

We investigate a new structure for machine learning classifiers applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2021

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2020.113560